Working Around an Excel Column Limit
Larry Nelson

Curtin University of Technology

Document date: 24 June 2004
website: www.lertap.curtin.edu.au
The main purpose of this document is to present solutions to a bothersome Excel limit which can affect Lertap users in some cases. More generally, the document presents useful shortcuts for users who have jobs with numerous subtests – in particu​lar, “Solution 3” below shows how the use of *wts and *alt control lines can ease the task of creating a CCs worksheet suitable for use with multiple sub​tests.

In November 2003 I received an email note from Fae Mellichamp, of Professional Testing Inc. in Tallahassee Florida. It had to do with Lertap producing a “Run-time error 9: subscript out of range mes​sage” when working through a lengthy CCs worksheet.

In March 2004 Barbara Foster, of the University of Texas South​western Medical Center, reported a similar problem.

Excel’s run-time error 9 message seems to cover a multitude of problem conditions. I think it fair to say that it’s hardly ever obvious what causes this message to appear; in my experience the message can arise when there is indeed a subscript out of range problem with Lertap’s macros, but it can also appear when something totally different happens.
In this case, the problem uncovered by Fae M. and Barbara F. had to do with an Excel limit: although any cell in Excel can contain some 32,000 text characters, a single Excel column cannot be wider than 255 characters. So, how to display more than 255 characters in a cell? Use Excel’s Format Cells options to turn on Wrap text, found under the Alignment tab. (Easy.)

Have a look at this sample from a CCs worksheet:

[image: image1.png]osoft Excel - Hamburge a]
Fle Edt Vew Inset Fomet Took Data Window Hep -8 x
X © tews B 7% gun- 4] shorts~ [l [(Il Mover~ @ Liense - Lo~ |
RICI ~ & Hamburger cooking exam with 180 items; item 1 is in column 1
1 =

[Hamburger cooking exam witn 180 items: item 1 is in column 1.

"eal (cl-c20 c31-c70 c8l-cldn C151C170 clsl-czzo)

ENIRINII

The nd subtest uses 71 of the items, in these colums
eal (€3 o6 o9 10 o1l ol 19 o3z c33 oi6 c38 43 o46 48 ©S2 oS3 cSE oS7
61 63 64 65 67 c6B cBS cB6 cBY 90 c94 cI5 c99 clOl cl0z cl03 cl08
Cl1L Cl15 Cl17 C119 cl22 c125 cl26 130 cl31 132 c134 c135 c137 cisd ciss
157 c156 c159 cl66 c183 c186 C167 c169 cl92 c193 cl94 c195 c200 c201 c20s
5 ©207 c208 ©209 c211 c213 ©216)
i« » v\ Data \CCs { OrigcCs / I« | ol
Ready

To be sure, the CCs sheet exemplified above is incomplete – it’s missing some lines, such as *sub and *key – it would not work as seen here. But please ignore this – what I want to talk about is the *col line associated with the 2nd subtest, seen above in Row 5.
The *col line is long, having more than 300 characters
. It displays okay because I have gone to Format / Cells and ticked the Wrap text option.

But Excel will reject the line if we try to do anything practical with it. For example, if I try to make a copy of the CCs worksheet, Excel will copy just the first 255 characters of the *col line. If I go to Lertap’s Run menu, and ask it to Interpret the CCs lines, Lertap will say it can’t process the long *col line as it has more than 255 char​acters.

How to work around this problem? There are at least three possible ways, presented below as “Solutions” 1 through 3.

Solution 1: use Lertap abbreviations in a squeeze action
Look at the CCs sheet below:
[image: image2.png]T E o o i D O S o x
X © tiow~ ® ¢ aun~ 4 shots -l [[l tover - @ Uesnse~ Lo~
1

1 [the 2nd subtest uses 71 of the items, in these column:

e (23 ©6 c9-cll c14 ©19 ©32 ©33 c36 £38 ©43 46 c48 o52
©53 56 o857 c61 c63-c6S c67 c6B c8S o6 cB9 cI0 c94 o985
©99 c101-¢103 €108 clll el13 o117 c119 cl22 125 e126
©130-c132 £134 £135 137 154 c156-c159 cl66 o183 o186

5 2187 ci63 £192-c195 o200 c201 c206-c205 c211 c213 c216)

3 &
I« » v\ Data)\ CCs { 2ndCCs / OrigcCs / Il | Qi
Ready

Notice how *col has been abbreviated as *c, and ranges have been used in the *c line when subtest items are in groups of three or more (c9-c11 instead of c9 c10 c11, for example).

The line has been reduced from 320 characters to 272. This is a handy reduction, but in this case it’s not enough. The magic number is 255; nothing over this figure will work.

Suppose we use another abbreviation; we’ll go into that long *col line and delete each and every space, as shown below:

[image: image3.png]@) tle £t vew Dot Fome: Iods Dta window e o x
X © tiow~ ® ¢ aun~ 4 shots -l [[l tover - @ Uesnse~ Lo~
1 =
1 [The 2na_suntest uses 71 of the items, in these colums:| |
Tolescees-
©11c14c19032033036c38043046048052053056057061063— |
65067060CE5C0609cI0IACTEITL01-
1030108C1116115611761 1961226125012 60130
1520130135013 761 540156015901 66 163C 1660 167C169C192619
2 |sc200c201c206-c209c211c213c216:
& &
b i Data \Cos { 2ndeCs { Ot fegs / |« i

Ready

The line has become quite hard to read, but we’re down to 217 characters, and the line works – Lertap will process it correctly. (Note that the line looks bad above; it seems there are many spaces after the c9- characters, and after c63-, again after c101-, and so on. But there aren’t; Excel is using the hyphens to break the line so that it displays in a manner which it prefers.)
Given this understanding of the 255-character limitation, it’s possi​ble to suggest some operational guidelines:

For the *col CCs line, we’ll always require these four characters: *c(), leaving us with 251 characters to work with.

For a worst-case scenario, let’s say that all items are located to the right of column 99 in the Data worksheet. This means that we need four columns per item in the *c line; for example, c100, c120, c200, and so forth.

Now, what’s 251 divided by 4? Call it 62 (it’s 62.75, but we have to round down to the nearest integer). So, in the very worst case, we can make our *c() line host 62 items.
Squeezing things: is it possible to get more than 62? But of course – just see the example above, where I was able to shoehorn 71 items into *c(), and I used only 217 characters in the process. That means I used an average of (217-4)/71=3 characters per item (I have to subtract 4 from the length for the four characters in *c()). Squeezing will be possible whenever item ranges can be used. For example, *c(c100c101c102c103) can be squeezed down to *c(c100-c103), a savings of 7 characters.
Of course, “squeezing” is also possible when the items are located to the left of column 100. In this case we require 3 characters per item (for example: c41). If we’ve got 251 columns to work with, we could get 83 items squeezed into *c().
When you get into this problem, perhaps “Solution 1” will do the job for you. You’ll know if it does or doesn’t – whenever the *col line has more than 255 characters, Lertap produces a message which tells you exactly how many characters there are. Are you out of luck if you can’t get the *col line down to 255 characters? No; there are a couple of other solutions – one of them I like quite a bit, and have recommended it to all my relatives.
Solution 2: use *mws lines to remove items
Look at the CCs sheet below:

[image: image4.png]W te & vew Dt Foma Dok Do Wedw tob e x

X © tew~ T < gun- £ shorts W 1 [l Mover - @ Lgense~ Lo

1

1 [study skilis test 2004: 40 responses starting in column 1.
2 [reol (c1-c20 c31-c50)
3 [*sws Res=(4,B,C,D,E), Name= (A1l study skills), Title=(AllSkills), W
4 [*key CCACB CABAB BDBAD BEARD ECDCE RBDDA CBCBE BDDCA
5 [Scale 1 uses 28 of the items.
"eol (o2 o4 5 ©7-c9 cli-cl4 ©16 c18-020 ©32 33 £35-037 ©39 c4l-cdS o4
6 |c48 cs0)
7 [*sws Res=(4,B,C,D,E), Name=(Critical Skills), Title=(Critical), Ut=0
8 [*key C CB ABA BDBA B AAD CD EAB D CBCBE DD
9 [Scale 2 uses 12 of the items.

10 eol (el c3 c6 10 c15 cl7 o3l c3d c38 cd0 c46 c4o)

11 *sub Res=(4,B,C,D,E), Nawe=(Extra Skills), Title=(Excral, U

12 tkey CACBDBEECDABC

14« > v\ Data)\CCs / Codetk / l«l |
Ready

In the interest of clarity, let me copy the rows above from Excel, and paste them into Word:

	Study skills test 2004; 40 responses starting in column 1.

	*col (c1-c20 c31-c50)

	*sub Res=(A,B,C,D,E), Name=(All study skills), Title=(AllSkills), Wt=0

	*key CCACB CABAB BDBAD BBAAD ECDCE ABDDA CBCBB BDDCA

	Scale 1 uses 28 of the items.

	*col (c2 c4 c5 c7-c9 c11-c14 c16 c18-c20 c32 c33 c35-c37 c39 c41-c45 c47 c48 c50)

	*sub Res=(A,B,C,D,E), Name=(Critical Skills), Title=(Critical), Wt=0

	*key C CB ABA BDBA B AAD CD EAB D CBCBB DD A

	Scale 2 uses 12 of the items.

	*col (c1 c3 c6 c10 c15 c17 c31 c34 c38 c40 c46 c49)

	*sub Res=(A,B,C,D,E), Name=(Extra Skills), Title=(Extra), Wt=0

	*key C A C B D B E C D A B C

This example has a 40-item test, with two “scales”. In Lertap terms, the example has three subtests – the first is the whole 40-item test, with the two “scales” forming subtests two and three.

The example is fairly straightforward, with maybe a couple of things to note: the Wt=0 assignments on the *sub lines do what? Each Wt=0 keeps the corresponding subtest from entering into the total test score which Lertap will normally make. In this example, all subtests have a Wt=0 declaration, and, as a result, there will not be a total test score.

Note the grouping of the keyed-correct responses on the *key lines. The first subtest (the whole test) has them in groups of 5, which is a personal preference – the keys do not have to be grouped at all, but I almost always uses spaces in the *key line so as to make the line easier to read.
This said, why the strange grouping pattern seen in the second subtest’s *key line?

Well, whenever I have a job like this I often make a corresponding codebook. Look:

[image: image5.png]£ Microsoft Excel - Solution2ixs EEX

W He & vew Dt Foma Dok Do Wedow tob
e x

X © tew Bun shorts - (] |- Mover - @ Ligense - Lo~ 2|

Critical | Extra
skills

%

%

0|00 o0 en | [ea o [0
0|00~ o0 en | |ea o [0

c
@
A
@
B
c
A
B
A
B
B
D
B
A
D
B
B
A
A
D
E
@
n

£y aa
1 <5 i Data {5) CodeBk /
Ready

Codebooks are real useful to me – I find I make fewer mistakes in the CCs worksheet if I have a codebook to work from – I’ll make the codebook, using colours to organise things, and print it on my handy colour inkjet. Then I use the printout to help me write the CCs lines.
Can you see why the *key entries for the second subtest are grouped as they are? Each space in the *key line corresponds to a break in the column of x’s for the Critical skills subtest – it makes things easier to double check.

Now, to this point this section’s discussion has had not much to do with the theme of this paper. We’re talking about ways to get around the 255-character width limit imposed by the current version of Excel; my introduction of the codebook idea may appear to have little to do with the main topic, but now you know I’ve got it, and I’ll continue to use it in the background as I work through new examples of CCs sheets.

Please to admire the following CCs worksheet:
	Study skills test 2004; 40 responses starting in column 1.

	*col (c1-c20 c31-c50)

	*sub Res=(A,B,C,D,E), Name=(All study skills), Title=(AllSkills), Wt=0

	*key CCACB CABAB BDBAD BBAAD ECDCE ABDDA CBCBB BDDCA

	Scale 1 uses 28 of the items.

	*col (c1-c20 c31-c50)

	*sub Res=(A,B,C,D,E), Name=(Critical Skills), Title=(Critical), Wt=0

	*key CCACB CABAB BDBAD BBAAD ECDCE ABDDA CBCBB BDDCA

	*mws c1, *

	*mws c3, *

	*mws c6, *

	*mws c10, *

	*mws c15, *

	*mws c17, *

	*mws c31, *

	*mws c34, *

	*mws c38, *

	*mws c40, *

	*mws c46, *

	*mws c49, *

	Scale 2 uses 12 of the items.

	*col (c1 c3 c6 c10 c15 c17 c31 c34 c38 c40 c46 c49)

	*sub Res=(A,B,C,D,E), Name=(Extra Skills), Title=(Extra), Wt=0

	*key C A C B D B E C D A B C

Note that the *col and *key lines are the same for the first and second subtests above. Of course, this isn’t right – the second subtest does not use all 40 items; I have corrected the picture by using *mws lines to remove 12 items from the second subtest.

You didn’t know *mws lines could be used in this manner? You might have a browse of Lelp, Lertap’s help file, where this is discussed.

The Web version of Lelp may be found at this URL:

www.lertap.curtin.edu.au/HTMLHelp/HTML/index.html
So, What’s the big deal here? At first it seems tedious to have to type up 12 *mws lines. What have I gained? Use of the same *col and *key lines. For me this is a big gain. Even with a codebook printed and at hand, I still make frequent mistakes when I have a subtest whose items are scattered all over the Data worksheet’s columns, and I find it particularly easy to make mistakes in the *key line in such cases.
In the context of the present paper, being able to use the same *col line from one subtest to another can solve the 255-character limit. In the example above, the two *col lines for the second subtest are these:

*col (c2 c4 c5 c7-c9 c11-c14 c16 c18-c20 c32 c33 c35-c37 c39 c41-c45 c47 c48 c50)

*col (c1-c20 c31-c50)

We don’t have the 255-character problem here; the longest *col line has only 82 characters, but you can still see the great reduction in line length resulting from being able to use the shorter *col line.
Here’s another example of the benefit realised by this approach; the first *col line below has more than 255 characters, while the second has less than 15:
*col (c3 c6 c9 c10 c11 c14 c19 c32 c33 c36 c38 c43 c46 c48 c52 c53 c56 c57 c61 c63 c64 c65 c67 c68 c85 c86 c89 c90 c94 c95 c99 c101 c102 c103 c108 c111 c113 c117 c119 c122 c125 c126 c130 c131 c132 c134 c135 c137 c154 c156 c157 c158 c159 c166 c183 c186 c187 c189 c192 c193 c194 c195 c200 c201 c206 c207 c208 c209 c211 c213 c216)

*col (c1-c220)

And there you have it: the second solution to the 255-character limitation has to do with using multiple *mws line to remove items from a subtest. I get to use the same *col and *key lines used in the whole test, which I see as a real plus. The minus is that I have to type up what at times can be many *mws lines.

Is Solution 2 the one I recommend to all my relatives? No. It’s quite okay, but I much prefer the parsimony of the next solution.
Solution 3: use a *wts (or *alt) line to remove items
Look at the CCs sheet below:

	Study skills test 2004; 40 responses starting in column 1.

	*col (c1-c20 c31-c50)

	*sub Res=(A,B,C,D,E), Name=(All study skills), Title=(AllSkills), Wt=0

	*key CCACB CABAB BDBAD BBAAD ECDCE ABDDA CBCBB BDDCA

	Scale 1 uses 28 of the items.

	*col (c1-c20 c31-c50)

	*sub Res=(A,B,C,D,E), Name=(Critical Skills), Title=(Critical), Wt=0

	*key CCACB CABAB BDBAD BBAAD ECDCE ABDDA CBCBB BDDCA

	*wts 01011 01110 11110 10111 01101 11010 11111 01101

	Scale 2 uses 12 of the items.

	*col (c1 c3 c6 c10 c15 c17 c31 c34 c38 c40 c46 c49)

	*sub Res=(A,B,C,D,E), Name=(Extra Skills), Title=(Extra), Wt=0

	*key C A C B D B E C D A B C

This looks nice, eh? Now I have used the *wts line to remove those 12 items from the second subtest.

The entries in a *wts line correspond to the number of points given to the keyed-correct answers; there must be one integer for each item. My *wts line has twenty-eight (28) 1’s, and twelve (12) 0’s (zeros). When Lertap sees that an item’s correct answer has a “weight” (points value) of zero, it removes the corresponding item from the subtest.

It was easy to type the *wts line’s entries: I simply used my printed codebook, typing a zero for each empty cell in the Critical skills column, and a one for each x.
So, How is the *wts line a solution to the 255-character limitation? It lets me employ the *col line which refers to the whole test. And, as a nice bonus, I also get to use the *key line from the whole test.
Why don’t I go whole hog and use a *wts line for the last subtest? This thing about being able to use the same *col and *key lines is so very handy – look, it’s easy peasy -- I copy the *col line, paste it into the third subtest, copy the *key line, paste it, and then gin up an appropriate *wts line, using my codebook:
	Study skills test 2004; 40 responses starting in column 1.

	*col (c1-c20 c31-c50)

	*sub Res=(A,B,C,D,E), Name=(All study skills), Title=(AllSkills), Wt=0

	*key CCACB CABAB BDBAD BBAAD ECDCE ABDDA CBCBB BDDCA

	Scale 1 uses 28 of the items.

	*col (c1-c20 c31-c50)

	*sub Res=(A,B,C,D,E), Name=(Critical Skills), Title=(Critical), Wt=0

	*key CCACB CABAB BDBAD BBAAD ECDCE ABDDA CBCBB BDDCA

	*wts 01011 01110 11110 10111 01101 11010 11111 01101

	Scale 2 uses 12 of the items.

	*col (c1-c20 c31-c50)

	*sub Res=(A,B,C,D,E), Name=(Extra Skills), Title=(Extra), Wt=0

	*key CCACB CABAB BDBAD BBAAD ECDCE ABDDA CBCBB BDDCA

	*wts 10100 10001 00001 01000 10010 00101 00000 10010

In this example a double check on the *wts lines for the second and third subtests is easy to make – the third subtest is just the 12 items not included in the second subtest, so where the *wts line for the second subtest has a zero (0), the *wts line for the third subtest should have a one (1). And conversely, of course: where the *wts line for the second subtest has a one (1), the third *wts line should have a zero (0).

I could have used a *wts line for the first subtest too, you know. Sure thing. It would have forty (40) ones, and no zeros. Such a line would tell Lertap that the correct answer for each and every item is worth one point. But hold on – this is the default, this is what Lertap always does for cognitive tests, until we tell it otherwise. When default item scoring is in effect, there’s no need for a *wts line.
At this point I thought I’d refer you to more reading; the *wts line seems real useful – what documentation is there for it?
Hmmm … to my surprise there’s very little. I can’t find any mention in Lelp. There is some discussion in the manual, but it’s not much at all (see Chapter 5, and please note that the *wts line is also re​ferred to as the *wgs line – both forms are correct).
Lelp says that the *alt line may be used to remove items. The fol​lowing CCs lines exemplify use of *alt:

	Study skills test 2004; 40 responses starting in column 1.

	*col (c1-c20 c31-c50)

	*sub Res=(A,B,C,D,E), Name=(All study skills), Title=(AllSkills), Wt=0

	*key CCACB CABAB BDBAD BBAAD ECDCE ABDDA CBCBB BDDCA

	Scale 1 uses 28 of the items.

	*col (c1-c20 c31-c50)

	*sub Res=(A,B,C,D,E), Name=(Critical Skills), Title=(Critical), Wt=0

	*key CCACB CABAB BDBAD BBAAD ECDCE ABDDA CBCBB BDDCA

	*alt *5*55 *555* 5555* 5*555 *55*5 55*5* 55555 *55*5

	Scale 2 uses 12 of the items.

	*col (c1-c20 c31-c50)

	*sub Res=(A,B,C,D,E), Name=(Extra Skills), Title=(Extra), Wt=0

	*key CCACB CABAB BDBAD BBAAD ECDCE ABDDA CBCBB BDDCA

	*alt 5*5** 5***5 ****5 *5*** 5**5* **5*5 ***** 5**5*

The characters on the *alt line indicate the number of alternatives, or response codes, used per item. In this example, the *sub line’s Res=(A,B,C,D,E) declaration tells Lertap that test items may use up to five (5) alternatives; the *alt line is usually used when some of the items use fewer than this, and asterisks on the *alt line get Lertap to exclude the corresponding item from the subtest.
I really like this solution to the 255-character limitation; in fact, I think it has so much going for it that I suggest it might be consid​ered as a general alternative to creating CCs lines with multiple subtests. I say this as being able to use the same *col and *key lines is, in my opinion, an absolute work saver.

Alternative to the codebook
Have a wee peek at the CCs sheet below:

	Study skills test 2004; 40 responses starting in column 1.

	*col (c1-c20 c31-c50)

	*sub Res=(A,B,C,D,E), Name=(All study skills), Title=(AllSkills), Wt=0

	*key CCACB CABAB BDBAD BBAAD ECDCE ABDDA CBCBB BDDCA

	Scale 1 uses 28 of the items.

	*col (c1-c20 c31-c50)

	*sub Res=(A,B,C,D,E), Name=(Critical Skills), Title=(Critical), Wt=0

	*key CCACB CABAB BDBAD BBAAD ECDCE ABDDA CBCBB BDDCA

	.col 00000 00001 11111 11112 33333 33334 44444 44445

	. 12345 67890 12345 67890 12345 67890 12345 67890

	*wts 01011 01110 11110 10111 01101 11010 11111 01101

	Scale 2 uses 12 of the items.

	*col (c1-c20 c31-c50)

	*sub Res=(A,B,C,D,E), Name=(Extra Skills), Title=(Extra), Wt=0

	*key CCACB CABAB BDBAD BBAAD ECDCE ABDDA CBCBB BDDCA

	.col 00000 00001 11111 11112 33333 33334 44444 44445

	. 12345 67890 12345 67890 12345 67890 12345 67890

	*wts 10100 10001 00001 01000 10010 00101 00000 10010

This CCs sheet now has some extra lines, ones I might call “ham​burger helpers”. I refer to the lines which begin with a full stop, or “period”. If you’re looking at this document in colour, the lines are seen in grey.
The purpose of these lines is to indicate column numbers. Each pair of hamburger helpers is read from top to bottom – we’ve got 01 02 03 04 … 49 50 … can you see it? These vertical numbers refer to columns in the Data worksheet.

 Look at the second subtest’s *wts line, the one which begins with *wts 01011. The first zero (0) in this line is found below 01 in the hamburger helper lines immediately above it, while the first one (1) is found below 02. See? It’s like a codebook. The two hamburger helper lines lay out the Data columns used for the item responses, after which it is, in theory, much easier to create the *wts line without making an error.
Can the hamburger helpers remain in the CCs worksheet when Lertap runs? Yes, they can. They’re like any other comment line; Lertap totally ignores them – Lertap only concerns itself with the lines which begin with an asterisk – all other lines are passed over.
In the example above there are 18 lines, of which 11 have asterisks at their start; the other 7 lines do not have asterisks, and, conse​quently, Lertap will not even really read them.
I refer to non-asterisk lines as “comment lines” since they’re essentially comments for me, little messages which help remind me of what I’m trying to accomplish. I have started my hamburger helper lines with full stops (periods), but this is not required, not at all. What is important is that the hamburger helper lines line up with the characters in the line below; I have made sure my CCs worksheet uses a fixed-pitch font, such as Courier New – fonts with proportional pitch, such as Arial and Verdana, do not mix well at all with the use of hamburger helpers.
When item responses are found beyond column 99 of the Data worksheet, a third hamburger helper line will be called for, as exemplified below -- note that the basic *col line has changed from the examples above; now item responses are located in Data columns 1 through 20, and 131 through 150:

	*col (c1-c20 c131-c150)

	*sub Res=(A,B,C,D,E), Name=(Critical Skills), Title=(Critical)

	*key CCACB CABAB BDBAD BBAAD ECDCE ABDDA CBCBB BDDCA

	.col 00000 00000 00000 00000 11111 11111 11111 11111

	. 00000 00001 11111 11112 33333 33334 44444 44445

	. 12345 67890 12345 67890 12345 67890 12345 67890

	*wts 01011 01110 11110 10111 01101 11010 11111 01101

If you’re not inclined to make a codebook, perhaps you’ll go for the hamburger helpers. But beware(!): I am using fairly simple examples, ones designed to fit within the margins of these pages. In the real world there will be more items; the *key and *wts lines will be long, too long for Excel to fit on the computer screen without horizontal scrolling. And as soon as horizontal scrolling sets in, it becomes impossible to work with the hamburger helpers – it is no longer possible to line things up as the screen incessantly scrolls from left to right.
But all is not lost. You can use a text editor to get the job done – Notepad or WordPad on a Windows computer, TextEdit on a Mac. These programs will not scroll the way Excel will, that is, as long as you turn their word wrap feature off. Write the CCs lines in the text editor, and copy and paste them into your CCs worksheet. It’s easier to do this than you might at first think. (In fact it is real easy.)
The wrap-up
Present versions of Excel have a practical working limit of 255 char​acters per cell. For Lertap users, this limitation will at times make it difficult to create *col lines – when a Lertap subtest uses numerous items, ones which occupy non-adjacent columns in the Data work​sheet, the *col line will, in some cases, want to stretch beyond the 255-character limitation.
Excel won’t allow Lertap to process such lines; things will come to a halt – Lertap will display an alert box and stop, waiting for the line to be fixed.

This document suggests three possible remedies: (1) use abbrevia​tions to squeeze more characters into the *col line; (2) make use of multiple *mws lines to remove subtest items; and (3), use *wts or *alt lines to remove items. The third solution is my personal fa​vourite; I consider it to be so handy that it might well be used as a general approach to creating CCs lines for multiple subtests, even when the 255-character limit is not an is​sue.
Of course there is a fourth solution, not mentioned above but always present: send two business-class air tickets to Lertap HQ, and a friendly, problem-solving, multi-lingual team of helpers will wing your way, that is, providing it’s not winter there.

Larry Nelson

Curtin University of Technology

Perth, Western Australia

Email:

larry@lertap.com
Phone:

+61 8 9266 2183

Fax:

+61 8 9266 2547
� Remember that blanks, or spaces, count as characters.

Circumventing Excel’s column width limitation in Lertap, p.12.

